

Abstract

This paper presents a new approach to interoperability
testing of CORBA implementations. The ORB Under Test
(OUT) is embedded in the test system in such a way, that it
either assumes the role of a client or a server. For a given
configuration, the test system emulates the peer entity of the
OUT. In this way, it is possible to generate more
permutations of GIOP traffic than with other related testing
approaches. The test system uses ODMG-ODL for the data
schema of test cases and TTCN-3 for the behavioral
specification.

Keywords
CORBA, conformance testing, interoperability, ODMG-

ODL, TTCN-3

1. Introduction

Applications increasingly cross boundaries of
technological, administrative and political domains. Fields
like Ecommerce or Business-to-Business increase the need
for cross-platform development of distributed applications.
Because of the heterogeneity of these environments it is not
possible to enforce or even assume one single technology.
Heterogeneity exists at different levels; ranging from
different network technologies, different operating systems
and programming languages. Middleware platforms are
proven to be an adequate means to cope with heterogeneous
environments. A middleware platform spreads out like a

table cloth in a heterogeneous environment, offering a well-
known Application Programming Interface (API).

The Common Object Request Broker Architecture
(CORBA) [3] provides a framework for the development of
distributed object-oriented applications in heterogeneous
environments. CORBA is published as a set of
specifications that describe the behavior of a middleware
platform. The specification does not prescribe
implementation details.

Different vendors offering CORBA platforms can focus
on different market segments and choose appropriate
technical details for their implementations. As a
consequence, there exist multiple CORBA
implementations, ranging from commercial products to
open source versions.

Deriving an implementation from a specification raises
the question of conformance, i.e., if the implementation
conforms to the specification. Conformance guarantees that
the behavior is in accordance with the specification. Only
conformant implementations guarantee interoperability and
easy portability of applications between CORBA platforms.
Without conformance, the very philosophy of CORBA is
compromised which aims for the deployment of
applications in heterogeneous environments.

This paper focuses on interoperability conformance
testing of a CORBA implementation. Section 2 gives a brief
overview of CORBA and explains the difference between
interoperability and portability. It is argued that
interoperability plays a more crucial role than portability.
Section 3 first discusses several different approaches to test
conformance of interoperability with their respective

A Test Framework for CORBA Interoperability

Mang Li 1, Arno Puder2, Ina Schieferdecker1

1GMD FOKUS
Competence Center for Testing, Interoperability and Performance

Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany
{m.li, Schieferdecker}@fokus.gmd.de

2AT&T Labs
75 Willow Road

Menlo Park, CA 94025, USA
arno@att.com

drawbacks. It is followed by a proposal for a new test
configuration. Section 4 then introduces a test framework
based on the configuration discussed in the previous
section. Section 5 finally concludes this paper with an
outlook for future work.

2. CORBA and GIOP

In this section we first give a brief overview of CORBA.
Our discussion focuses on the key concepts portability and
interoperability of applications.

CORBA as a middleware platform provides the
specification of two different kinds of interfaces which we
call horizontal and vertical interfaces (see Figure 1). The
horizontal interface separates the application from the
middleware. The CORBA specification defines the
horizontal interface amongst others through the Interface
Definition Language (IDL), the Dynamic Invocation
Interface (DII), Dynamic Skeleton Interface (DSI) and the
Portable Object Adapter (POA).

The vertical interface resides between two instances of a
CORBA implementation. It is defined through the General
Inter-ORB Protocol (GIOP) in the CORBA specification.
The application programmer generally is unaware of the
details of GIOP, while a detailed knowledge of the
horizontal interface is necessary for building distributed
applications. The standardization of the horizontal interface
enables portability while the specification of the vertical
interface guarantees interoperability of applications.
Horizontal and vertical interface are not independent of
each other. E.g., data types definable based on the IDL at the
horizontal interface must be marshalled at the vertical
interface.

In the following we argue that with respect to
conformance to the CORBA specification interoperability
plays a more important role than portability. As shown in
Figure 1, the vertical interface decouples technological
domains. The vendors of ORB1 and ORB2 can target
specific markets. While a specific technological domain
may require the modification of the horizontal interface, the
vertical interface should not be modified in order to retain
interoperability.

One example of a technological domain is embedded
systems. The CORBA specification offers solutions for
these environments through its MinimumCORBA
specification [3]. MinimumCORBA is a true subset of the
full CORBA specification in order to enable support for
CORBA in resource limited environments.
MinimumCORBA removes certain elements from the
horizontal interface (e.g., DII and DSI) but explicitly places
no restrictions on the vertical interface in order not to
compromise interoperability with other CORBA platforms.

MinimumCORBA is therefore a good example where the
CORBA specification itself limits portability of
applications but retains full interoperability. No matter if
changes to the horizontal interface compromises portability
of applications, violating the interoperability is against the
very core of CORBA’s philosophy. In terms of conformance
testing we therefore focus on interoperability.

3. Test configuration

In this section we discuss the configuration for the
conformance testing of the vertical GIOP interface. First,
we briefly review some related approaches and discuss their
drawbacks. Then, we introduce our proposal that aims to
copes with the requirements raised in the previous section.

We will use the acronym OUT to denote the ORB Under
Test.

3.1 Related approaches

3.1.1 OUT on client and server side
In this configuration the OUT is used on both the client

and the server side (i.e., ORB1 and ORB2 in Figure 1). The
test suite is running on top of the OUT, invoking operations
with actual parameters. The test suite makes sure that the
operation reaches the server and that all parameters are
transmitted correctly. This approach only guarantees the
interoperability with respect to one ORB, namely the OUT.
While this approach makes a statement about the possibility
to build a distributed application based on the OUT, it
cannot make any statements with respect to interoperability
with other ORBs. In fact, the OUT could choose to
implement a proprietary protocol that is not based on GIOP.
This would make it impossible to interoperate with a
different vendors ORB.

3.1.2 Passive testing of vertical interface
One way to assure that the protocol at the vertical

interface is indeed based on GIOP is to inspect the network
traffic between two instances of the OUT as the test
proceeds. This approach was chosen for the conformance
test suite developed by The Open Group [4]. Here a protocol
analyzer sits between the client and the server OUT and

Client Server

ORB 1 ORB 2

Domain 1 Domain 2

horizontal
interface

vertical
interface

 Figure 1 Vertical and horizontal interfaces

ensures that the encoding of parameters and PDUs
conforms with GIOP.

While this approach can certify that the traffic between
two instances of the OUT is conformant to GIOP, it does
little to enforce all aspects of interoperability. The
shortcomings have to do with the fact that GIOP allows
certain implementation freedoms that cannot be controlled
at the horizontal interface. An example for this is the
endianness of the transmitted data. In GIOP, the sender can
choose the endianness (little or big endian) encoding of the
data to be transmitted. It is the receiver’s responsibility to
convert the received data into its preferred format. But
GIOP does not prescribe a policy that is binding for the
sender when to use which endianness. If the OUT decides to
use little endian encodings for all outgoing PDUs, the
observed traffic at the vertical interface will be conformant
to GIOP, but the OUT will never have to demonstrate its
fitness to cope with big endian encodings on the receiving
side.

Since the OUT can only be controlled at its stub/skeleton
interfaces, there is no way to influence when which kind of
encoding will be used. There are other examples where
GIOP does not prescribe specific policies that cannot be
controlled at the horizontal interfaces. Examples are the
padding during the alignment of data, encoding of union
default members and encapsulations of embedded
encodings.

3.1.3 Reference ORB implementation
To circumvent the problem mentioned in the last section

one might be tempted to use a reference ORB against the
OUT. But doing this yields the same problems mentioned in
the previous section, as the reference ORB will choose the
native endianness for the encoding of the data, just as the
OUT.

Also the approach based on the request-reply paradigm
(see section Section 3.1.2) may use a reference ORB. In
fact, a reference implementation in certain form is always
used in testing. It must behave as an ORB implementation
to provide the functionality as much as the tests require. The
existence of a reference ORB is in many cases only an
assumption. Important is to use an adequate method and
granularity so that failures can be resolved easily.

3.2 Proposal for new test configuration
The test configuration we propose in the following is to

allow direct access to the GIOP interface and active control
of messages exchanged with the OUT. In addition, when the
test control involves the horizontal interface, its use should
not restrict testing of the GIOP interface. For instance, the
existence of DII and DSI should not be required to allow
testing of MinimumCORBA implementations.

The test configuration is depicted in Figure 2. The OUT
is highlighted by a shadowed box. Although a client-server
paradigm is also used, the test components reside on
different interfaces. Namely, the test client communicates
with the OUT over the the vertical interface, i.e. the GIOP
interface, while the test server has access to the OUT over
the adaptation layer and the horizontal interface which is in
this case the skeleton interface.

The test client is not a CORBA client because it does not
use the standard stub interface. It is a test component that
emulates the behavior of the counter part of the OUT. It
must not be an implementation of a protocol engine. More
important is that it supports the observation and assessment
of the functionality of the OUT. In this sense, the test client
is an active test component.

The test server uses the skeleton interface, is therefore a
CORBA application. As a test component, the test server
provides control of the OUT, e.g. acceptance of a request
issued by the test client. It is also an active test component
as it generates replies that are communicated via the OUT
to the test client.

The adaptation layer is introduced for the customization
of interfaces used by the test server. For example, in case the
functionality of DII and DSI is used, the adaption layer may
map DII and DSI to static interfaces of a MinimumCORBA
ORB, while for a full CORBA ORB it can deliver the calls
one-to-one to its upper and lower layers.

The activities of the test client and test server need to be
coordinated, e.g. for timing of their setup, for
parameterization of messages or operation invocations, or
for the assignment of final test results. This can be done
either manually or automatically. For the latter, a test
manager can be used. It is less error-prone and more
efficient.

When we leave the bi-directional GIOP for future
consideration, and concentrate first on the asynchronous
communication, a second test configuration beyond the one
shown in Figure 2 needs to be mentioned, in which the
locations of the test client and the test server are swapped.
The stub interface takes the place of the skeleton interface.

 Figure 2 Test configuration

OUT

GIOP Interface

Test Client

Adaptation

Skel
Interface

Test Server

OUTOUT

GIOP Interface

Test ClientTest Client

Adaptation

Skel
Interface

Test Server

With both test configurations we are able to verify the
complete functionality of GIOP traffic.

In the following we continue to take the first
configuration as the example but consider the testing
methods so that they are applicable in both cases.

4. Specification of tests

After the test configuration is determined, its refinement
in terms of test specification is considered. We propose to
use high-level description in formal notations, in order to:

• allow unambiguous definition of test purposes;

• make test cases readable;

• reuse existing high-level data definitions;

• be abstract of target programming languages;

• enable high quality and efficient test development by
automated code generation.
In particular, for adequate testing of GIOP traffic in

terms of data transportation, we separate the focus of test
specification into two major parts: test data and test case, as
represented by Figure 3. It improves the scalability of the
test system. Furthermore, a specification-based
implementation concept is proposed. In this approach, test
data covers the data structure used by the test case
specification, and the data schema of the database used by
the run-time of the test case implementation. In this paper
we focus on the level of specification. Some ideas to the
implementation is given in Section 5.

In Section 4.1, we first elaborate the definition of the
GIOP Protocol Data Units (PDUs) used by the test cases in
CORBA IDL (abbr. IDL only), which is generated from the
IDL definitions of the test server and the IDL definitions of
the modules GIOP and IOP in the CORBA specification.

In Section 4.2, we proceed to the data schema that is built
up from the same input, but using different transformation
rules.

The specification of test cases includes the PDU data
structure for access to the database derived from the data
schema at run-time. It includes also the test server IDL for
the description of the test component that resides on the
CORBA APIs. This point is discussed in Section 4.3.

4.1 Data structure
As shown in Figure 3, the PDU IDL is generated from

the test server IDL and message header IDL. The generator

is called PDU-Gen. The test server IDL is designed by the
test developer according to the test purposes, e.g. to verify
the transport of different IDL typed values. The message
header IDL consists of the modules GIOP and IOP defined
in the CORBA specification.

The following is an excerpt that describes the structure of
a GIOP 1.2 message header:

// IDL
module GIOP {

struct Version {
octet major;
octet minor;

};
struct MessageHeader_1_2 {

char magic[4];
Version GIOP_Version;
octet flags;
octet message_type;

Test S e rv e r ID L

Data Schema

 Figure 3 Test specification and implementation

Database

M sg. H ead er ID L

PDU-GenSchema-Gen

Specification

Implementation

PDU IDL

Test System Spec.

TS-Gen

Generic Client Generic Server

Generated Test System Part

OUT

Test Data Test Case

include

include

unsigned long message_size;
};
struct RequestHeader_1_2 {

 // …
};

// …
};

For the current GIOP version, eight messages (PDUs)
are defined: Request, Reply, CancelRequest,
LocateRequest, LocateReply, CloseConnection,
MessageError and Fragement. A GIOP PDU is composed
of a general header, a specific header and a specific body.
For example, a Request PDU consists of an instance of
MessageHeader_1_2 , followed by an instance of
RequestHeader_1_2 , followed by an instance of the
Request body that consists of a sequence of the actual
parameters. The one-the-wire representation is determined
by applying the Common Data Representation (CDR) rules
to the sequence of those IDL definitions. Figure 4 gives a
graphical depiction of the structure of a Request PDU
according to GIOP 1.2.

The various parts of the PDU are described through
nested definitions of IDL-structs. Following the general
GIOP header are the request header and body. The Request
body contains the actual parameters of that particular
operation. It consists of the CDR encodings of all the input
and input/output parameters as they occur from left to right
in the signature of that operation. The precise structure of
the Request body depends on the signature of the test server
interface and is only defined as a sequence of octets in the
GIOP specification. The same holds true for the body of
Reply-PDUs, which contains all the output parameters of an
operation.

Since large portions of a GIOP PDU are already
described in IDL, we use IDL as the language to describe
the PDU structure for test cases.

Consider the following example:

interface TestServer {
 void foo (in short x, inout long y,

out double z);
 // …
};

The operation foo has one input parameter of type

short , one input/output parameter of type long and one
output parameter of type double . The body of the Request-
PDU will contain the short and long parameters and the
body of the Reply PDU will contain the long and double

parameters respectively (an input/output parameter is
transferred in both directions between client and server).
Using IDL, the structure of the bodies of the Request and
Reply PDUs can be described as follows:

struct foo_Request_body {
 short x;
 long y;
};
struct foo_Reply_body {
 long y;
 double z;
};

The CDR is used again to marshal the actual parameters
for the Request and Reply bodies. GIOP-Replies make a
distinction between normal and abnormal execution that is
indicated through an exception. This information can be
coded in a similar way as shown above for normal
execution.

For each of the operations of the test server interface,
several structs are derived that each describe the content of
a specific GIOP PDU. For example, the operation foo

mentioned above yields the following structs:

struct foo_GIOP_Request {
 GIOP::MessageHeader_1_2 giop_header;
 GIOP::RequestHeader_1_2 request_header;
 foo_Request_body request_body;
}
struct foo_GIOP_Reply_normal {
 // …
};
struct foo_GIOP_Reply_exception {
 // …
};

Request Message 1.2

General Header 1.2 Request Header 1.2Request Body

Magic Version Flag Type Size

Req_id Res_flagRsvd Target Operation Srv_ctx

Short_par Octet_par...

Major Minor

Request Message 1.2

General Header 1.2 Request Header 1.2Request Body

Magic Version Flag Type Size

Req_id Res_flagRsvd Target Operation Srv_ctx

Short_par Octet_par...

Major Minor

 Figure 4 Request message structure

Repeating this scheme, all operations of the test server
interface can be translated into a set of IDL specifications
that describe the logical structure of all the GIOP PDUs that
will be exchanged between the test client and the OUT.

4.2 Data schema
Since the generated PDU struture definitions, as

described in the previous section, are used by test cases to
get access to the database at run-time, a data schema that is
in-line with the IDL definitions eases both the specification
of constraints and the implementation of data access.

However, the PDU IDL is not directly used to derived the
data schema. Because some information in the input IDLs
which is not direct relevant for the test case specification,
e.g. the attribute of an operation (normal or oneway), or the
relations between message bodies of the same operation, is
no more contained in the generated PDU IDL. Therefore,
the generator for the data schema Schema-Gen takes the
original IDLs as input.

Further, using an IDL-related language would be
beneficial, because only minimal mappings of language
constructs are required. We propose to use the Object-
Definition Language (ODL) defined by the Object Database
Management Group (ODMG). ODMG 3.0 [1] is the most
recent specification of this consortium. It defines an object
database framework, containing the data schema language
ODL and the Object Query Language (OQL).

ODL provides interface and class types for objects.
Interface types are used for generalization. Class types are
used to directly instantiate objects. An object has an
identifier and name, which can be used to refer to each
other. ODL provides notations to specify relationships
between objects. In particular, the referential integrity is
guaranteed.

ODL is designed to be a super-set of IDL. Therefore it
supports most of the basic types of IDL. In addition,
collection objects are supported by the so-called type
generators: set , bag , list , array and dictionary .
Elements of collection objects are of the same type. Mostly
used are set objects - collections of unordered, non-
duplicated elements, and list objects - ordered collections
of objects.

The data schema specification using ODL is guided by
the following goals:

• Representing the complete information contained in the
original test server IDL and the message header IDL.

• Taking care of aggregation relations and other depen-
dence relations between data.

• Building data objects in a modular and hierarchical
manner to allow flexible use.
As the GIOP interface provides the transparent

communication between CORBA clients and servers, it is

adequate to store values needed both by the test client and
the test server in PDU structures.

The database does not store complete PDUs, but data
objects in a hierarchical structure that allows flexible
combination of PDU fields. The top-level structures are
general message headers, specific message headers and
specific message bodies, but not structures for complete
PDUs such as foo_GIOP_Request . It reduces redundancy of
storage space. Using constraints, PDUs can be constructed
on-the-fly.

In IDL, a PDU part, e.g. MessageHeader_1_2 , is defined
by a struct type. Its fields are represented by struct

members. There is an aggregation or composition relation
between a struct type and its members. Each member may
have different values. From testing perspective, these values
may be valid (defined) or invalid (undefined or forbidden).
In addition, there can be also relations between members of
a structured type.

Therefore we propose the following IDL to ODL
mappings (see also Figure 5):

• Each value used in PDU parts is represented by a sepa-
rate object instance. Data object inherits from a pre-
defined interface named DataObj . The interface con-
tains an attribute flag of type octet , to denote the
usage of the value, e.g. valid or invalid for simple fields,
normal or exceptional for message bodies.

• An IDL struct type is mapped to an ODL class type.

• Members of the struct type are mapped to attributes of
the class type.

• For each member, a separate class type is defined.

• A basic type member is mapped to a class type that con-
tains a list type attribute named valuelist . The type
of the list is defined by a class that inherits from the
interface DataObj , which contains a value attribute of
the original type of the struct member.

MessageHeader_1_2

Version

Version_major Version_minor

MessageHeader_flags
......

 Figure 5 Aggregation relation

• A member of the struct type that is itself a structured
type, e.g. struct or union , is mapped to an attribute of
the class type defined for the struct member, e.g.
Version .
Using these rules, the IDL for message header from

Section 4.1 can be translated into the following ODL:

module ODMG_GIOP {
interface DataObj {

octet flag;
}
class MessageHeader_1_2 : DataObj {

MessageHeader_magic magic;
Version GIOP_version;
MessageHeader_flags flags;
MessageHeader_message_type

message_type;
MessageHeader_message_size

message_size;
};
class Version : DataObj {

Version_major major;
Version_minor minor;

};
class Version_major : DataObj {

list <Version_major_value> valuelist;
};
class Version_major_value : DataObj{

octet value;
}
class RequestHeader_1_2 : DataObj {

//...
};
//...

};

That each value instance is accessible by referencing
object instances is important for building dependence
relations between data, as further discussed below.

Figure 6 illustrates a simplified view on the dependence
relations (represented by arrows with dotted lines) in a
Request message. The complete structure is depicted in
Figure 4.

Within the Request header, the values of fields
Operation , Resp_flag and IOR of Target (actually the type
id of the operation interface contained in the IOR) are
dependent from each other. The dependence is determined
by the signature of the operation defined in the test server
IDL. Also, the relation between Operation value and the
corresponding Request body is defined by the operation
signature, e.g. op1 and op1_Req_body .

On the other hand, the relations between message bodies
for a given operation, are determined by the semantics of the
test server interfaces.

In ODL, the identified dependence relations are defined
by relationship properties. For Figure 6, we may have the
following ODL definitions, in which the class

ReqHdr_operation_value and the class
ReqHdr_resp_flag_value reference to each other by bi-
directional relationship properties. A pre-defined interface
RequestBody is used by specific Request bodies to refer to
corresponding operation names.

module ODMG_GIOP {
interface RequestBody {

relationship ReqHdr_operation_value op
inverse ReqHdr_operation_value::req_bd;

relationship ReplyBody_normal rpl
inverse ReplyBody_normal req;

relationship ReplyBody_exception ex
inverse ReplyBody_exception req;

};
interface ReplyBody_normal { //...};
interface ReplyBody_exception {//...};
class RequestHeader_1_2 : DataObj {

ReqHdr_request_id request_id;
ReqHdr_resp_flags resp_flags;
ReqHdr_reserved reserved;
TargetAddress target;
ReqHdr_operation operation;
ODMG_IOP::ServiceContextList

service_context;
};
class ReqHdr_resp_flag : DataObj {

list <ReqHdr_resp_flag_value> valuelist;
};
class ReqHdr_resp_flag_value : DataObj {

octet value;
relationship ReqHdr_operation op

inverse ReqHdr_operation::flg;

Operation

RequestHeader_1_2

Resp_flag

op1_Rpl_body_n

op1_Req_body

op1_Rpl_body_ex

Target

IOR

op1

 Figure 6 Dependence relations

};
class ReqHdr_operation : DataObj {

list <ReqHdr_operation_value> valuelist;
};
class ReqHdr_operation_value : DataObj {

string value;
relationship ReqHdr_resp_flag_value flg

inverse ReqHdr_resp_flag_value op;
relationship RequestBody req_bd

inverse RequestBody::op;
};
class op1_Req_body : DataObj, RequestBody {

//...
};
//...

};

4.3 Test cases
The test case specification is the second major part of a

test specification. The test case behaviour describes the
exchange of test events with the OUT. Since GIOP is a
message-based protocol, messages are exchanged only as
test events. In black-box testing, the basic principle of
testing is that the test case sends a stimulus to the OUT,
awaits in general a set of possible reactions from the OUT
(including also unexpected ones), compares received
reactions (including also the absence of a reaction) with the
expected ones, and decides on the basis of this comparison
how to proceed with the test cases or which verdict to assign
(and to terminate the test case). The timing for the exchange
of messages is controlled with timers: that a reaction from
the OUT shall occur within a certain amount of time, that a
reaction from the OUT shall be delayed by a certain amount
of time, or that no reaction shall occur at all.

In the past, a methodology and framework for testing
distributed systems, known as conformance testing
methodology and framework (CTMF), have been developed
and internationally standardized. CTMF covers all aspects
of testing distributed systems such as test suite
specification, test notation (TTCN - Tree and Tabular
Combined Notation), test implementation and test
execution. CTMF has been successfully applied to a
number of systems which cover the range of e.g. e-mail
systems and directory services to management and IN
systems.

Currently, the third edition of TTCN (TTCN-3) [2] has
been developed to address testing needs of modern telecom
and datacom technologies and to widen the scope of
applicability. TTCN-3 is a text-based language for the
specification of tests for reactive systems in general.

TTCN-3 is on syntactical (and methodological) level
very different to previous TTCN versions. However, the
main concepts of TTCN have been retained and improved
and new concepts have been included, so that TTCN-3 will
be applicable for a broader class of systems. New concepts

are, e.g. a test execution control program to describe
relations between test cases such as sequences, repetitions
and dependencies on test outcomes (see also Section),
dynamic concurrent test configurations, and test behaviour
in asynchronous and synchronous communication
environments. Further improved concepts are, e.g. the
integration of ASN.1, the module and grouping concepts to
improve the test suite structure, and the test component
concepts to describe concurrent test setups.

A test specification in TTCN-3 is included in a module,
which declares all objects such as types, timer, test
components, etc. used in testing and which in particular
defines the test cases and their execution. The GIOP-Tests

module described below imports data type definitions in
IDL for test server and GIOP PDUs, as introduced in
Section 4.1.

For the GIOP tests we use a test configuration with three
test components (see also Figure 7): a test component for
the vertical interface (TestClient), a test component for the
horizontal interface of GIOP (TestServer), and a master test
component (MTC) for the overall control of the test
execution and coordination between the other two test
components. The interface of the OUT is defined by a
separate component type definition for OUT containing the
vertical and horizontal GIOP interfaces.

// TTCN-3
module GIOP-Tests {

import all from GIOP language IDL;
import all from TestServer language IDL;
type component MTC {

port Coord CP;
}
type component TestClient {

timer T_Response:= ...;
timer T_NoResponse:= ...;
timer T_Wait:= ...;
port Coord CP;
port VerGIOP VG;

}
type component TestServer {

timer T_Response:= ...;
timer T_NoResponse:= ...;
timer T_Wait:= ...;
port Coord CP;
port HorGIOP HG;

}
type component OUT {

port HorGIOP HG;
port VerGIOP VG;

}
...

}

The master test component executes the test cases. It
uses the component type definition MTC (keyword runs

on) and can be executed for OUT, which have interfaces
according to the OUT component type definition (keyword

system).
Initially, it creates the other two test components TC and

TS, activates a default Default_1 to capture unexpected
events during test execution, starts TC and TS with test
behaviour, e.g. ReqMessage_T1_TC for TC (see also
below), and awaits the termination of the created test
components (all.done is blocking until all test
components have terminated) in order to collect their
individual test verdicts and to assign the overall test verdict.
Test verdicts are pass (if the observed behaviour validates
the test purpose of a test case), fail (if the observed
behaviour disproves the test purpose of a test case),
inconclusive (if the observed behaviour leads neither
clearly to pass or fail), or error (for the exceptional cases of
run-time errors in the test system).

Verdicts are collected by a TTCN-3 specific mechanism:
each test component (i.e. all three in our case) have a local
test verdict. This verdict is treated according to the “get-
only-worse” rule: whenever during the execution of this test
component an inconclusive or fail is assigned, the overall
verdict of the test cases is at most inconclusive or
respectively fail.

testcase ReqMessage_T1
(fRequest: foo_GIOP_Request,
 fRequestReply: foo_GIOP_Reply_normal, ...)
runs on MTC
system OUT
{

var TestClient TC := TestClient. create ;
var TestServer TS := TestServer. s ;
connect (mtc :CP, TC:CP);
connect (mtc :CP, TS:CP);
map(TC:HG, system :HG);
map(TS:VG, system :VG);
activate (Default_1);
TC. start (ReqMessage_T1_TC
(fRequest, fRequestReply));
TS. start (...);
all.done ;
log (“successful termination);
stop ;

}

The behaviour of the test components TestClient and
TestServer are defined in terms of functions, for instance,
ReqMessage_T1_TC (see below). After activation of a default

(in order to make the test behaviour robust for unexpected
responses from the OUT), a request message fRequest is
sent to the OUT via port VerGIOP. A timer is started in
order to prevent from infinite waiting. In an alternative
statement (keyword alt), the various responses are
expected at port VerGIOP. Only in the case that the response
is correct, a pass will be assigned. In the other cases (i.e.
wrong response, e.g. different to the template
fRequestReply , or no response, e.g. timeout), a fail will
be assigned.

function ReqMessage_T1_TC
(fRequest: foo_GIOP_Request,
 fRequestReply: foo_GIOP_Reply_normal)
runs on TestClient
{

activate (Default_2());
VerGIOP. send (fRequest);
T_Response. start ;
alt {
[] VerGIOP.receive(fRequestReply)

{ set.verdict(pass); ... }
[] VerGIOP.receive

{ set.verdict(fail); stop ; }
[] T_Response.timeout()

{ set.verdict(fail); stop ; }
}

}

The control part is used to denote the successive
execution of test cases, to define the parameterization of test
cases (using the data access described in the previous
section) and to make the execution of test cases dependent
on the outcome of previous test cases.

While message types (the structure for a test event
exchanged between test system and OUT) are included
from imported PDU IDL definitions, message templates
(the concrete values or value constraints for a test event) are
specified as the following examples foo_req_v and
foo_rpl_v show.

A template definition alignes to the PDU IDL definition.
It may use concrete values or symbolic values: any refers to
all available values for the appropriate field; any is further
constrainted by a flag which can be valid or invalid ,
normal or exceptional . The keyword dep is used to denote
dependencies between templates.

The templates are used by external functions e.g.
get_fooRequestMessage to get access to the database.

template foo_GIOP_Request foo_req_v
:= {
giop_header any.valid ,
request_header any.valid ,
request_body.x any.normal
}

template foo_GIOP_Reply_normal foo_rpl_v
:= dep foo_req_v {

OUT

TestClient TestServer

MTC

CP CP

VG HG

 Figure 7 Test component configuration

giop_header any.valid ,
reply_header any.valid ,
reply_body_normal any.normal
}

external function get_fooRequestMessage
(in template ,
out foo_GIOP_Request)
return Boolean ;

external function get_fooReplyNormalMessage
(in template ,
in foo_GIOP_Request,

 out foo_GIOP_Reply_normal)
return Boolean ;

control {
var foo_GIOP_Request curReq;
var foo_GIOP_Reply_normal curRpl;
while (get_fooRequestMessage

(foo_req_v,curReq)) {
get_fooReplyNormalMessage
(foo_rpl_v,curReq, curRpl);
execute (ReqMessage_T1
(curReq, curRpl,...),20);

}
}

The test case ReqMessage_T1 is executed with different
request and reply message as long as the data pool provides
another request message for this test cases. The current data
for a test case are retrieved via external functions
getRequestMessage and
getRequestReplyNormalMessage , respectively.
getRequestMessage returns true if another message
template is available. The execution of the testcase is

defined in the execute statement. There, the concrete data
is bound to the test case. The execution of the test case is
limited to 20 seconds only. If the overall verdict cannot be
assigned within that time, an error verdict will be assigned
instead.

5. Concepts of test implementation

population of database
data access
generic client and server

6. Conclusions

completion and formalization of the IDL-ODL
mappings.

example for use of database.
plan for realization.

7. References

[1] R.G.G. Cattell, et al.: The Object Database Standard: ODMG
3.0, Morgan Kaufmann Publ., Inc., 2000.

[2] ETSI: Methods for Testing and Specification (MTS): The Tree
and Tabular Combined Notation version3 (TTCN-3), Core
Language, Oct. 2000.

[3] Object Management Group: Common Object Request Broker
Architecture (CORBA), ver. 2.4, Feb. 2001.

[4] The Open Group: CORBA Verification Suite, User’s Guide,
ver. 1.1.1, Sep. 1999.

