Construction of Generic Web—Based User
Interfaces

Arno Puder

San Francisco State University
1600 Holloway Avenue
San Francisco, CA 94132

arno@sfsu.edu

Abstract. Several middleware technologies exist today that facilitate
the development of applications in distributed heterogeneous environ-
ments. Interoperability is the property by which an application can span
different middleware technologies. Much attention has been given to the
application—to—application interoperability. With the rise of web services,
we introduce a generic model for user—to—application interoperabilty. At
the core of this concept is a mapping from user—friendly web forms to
arbitrary middleware technologies.

1 DMotivation

A middleware seeks to facilitate the development of applications in distributed,
heterogeneous environments. Several predominant middleware technologies exist
today, such as CORBA, EJB or Web Services. As applications often span dif-
ferent technological and administrative domains, it is not uncommon that one
application is deployed on several different middleware platforms.

Interoperability defines the property by which different middleware technolo-
gies connect to each other. Without interoperability, an application could not
span different middleware technologies. Much attention has been paid to in-
teroperability for the predominant middleware technologies. Today there exist
solutions to connect the major middleware platforms.

We view the technologies around web applications as another middleware
platform. The web browser serves as a generic user interface. Applications are
written as Common Gateway Interface (CGI) scripts that run on the side of the
web server and communicate with the web browser via HTML over HTTP. Sev-
eral technologies exist that facilitate the development of web applications such
as Java Server Pages (JSP) or Active Server Pages (ASP). While highly flexible,
programs written in this technology often merely serve as a bridge between the
web browser and some backend service such as a middleware or a database.

In this paper we introduce a model that allows the automatic creation of
web—based user interfaces and that does not require any coding on the side of
the web server. We describe a generic bridge that can be used to create user—
friendly interfaces for arbitrary backend services without having to implement

a custom interface. The interface is derived automatically from the interface
specification of the backend service.

In section 2 we take a closer look at interoperability in the context of user—to—
application interoperability. Section 3 introduces the architecture of our generic
bridge. Some implementation details are highlighted in section 4 while section 5
discusses related work. Finally, section 6 provides a conclusion and outlook.

2 Interoperability

Development of distributed applications is supported by a middleware. The term
“middleware” derives from the fact that it is located between the operating
system and the application and provides a level of abstraction for distributed
applications. One way to think of it is that a middleware platform spreads out
like a table—cloth in a heterogeneous environment, hiding different technologies
beneath it. The same API is offered at the various access points throughout the
network.

Unfortunately it is impossible to impose the same technology everywhere
and it can not be avoided that different middleware technologies dominate in
different domains. The dashed line in Figure 1 defines the interface between two
different technological domains. By standardizing this interface, one achieves
interoperability of applications thereby decoupling technological domains.

Middleware 1 ———» Middleware 2

Domain 1 Domain 2

Fig. 1. Interoperability between different domains.

The interface between different middleware technologies is usually defined
through a network protocol detailing how the two platforms talk to each other.
Interoperability of two domains can only be achieved if the object invocation
semantics and type systems that are used to describe object interfaces can be
mapped onto each other. Sometimes this leads to an extension of the type system

of one technology. E.g., in order to achieve interoperability between CORBA and
EJB, the CORBA type system had to be augmented by value-type-semantics
(a.k.a. objects—by—value). Another way of overcoming differences is to introduce
a bridge that implements a custom mapping.

| Middleware | | Interoperability |

DCOM Proprietary, DCOM specific protocol.

EJB Uses Java specific RMI or optional
CORBA-IIOP for the transport layer

SOAP XML-based marshalling

CORBA Defined through GIOP/IIOP

Web HTML over HTTP/CGI

Table 1. Comparison of different middleware technologies

Table 1 summarizes the characteristics of various middleware technologies
in use today with respect to the way they define interoperability. We view the
infrastructure for web applications as another middleware technology. As ap-
plications get increasingly end-to-end, reaching from the user interface to some
backend system, we focus our attention to interoperability with web applications.

Web applications are typically implemented as Common Gateway Interface
(CGI) scripts that get invoked by the web server. These scripts process any
user input and act as a bridge to some backend service. Common techniques for
implementing these CGI scripts are Java Server Pages (JSP) or Active Server
Pages (ASP) that embed a programming language inside an HTML—page.

For many applications, the CGI scripts merely act as a bridge to a backend
service. Data validation, implementation business logic and database access are
typically implemented on a backend system and the CGI script only passes user
input to this backend and renderes an HTML page as a result.

In this paper we introduce a generic bridge that is implemented as a CGI
script. The bridge automatically creates user—friendly user interfaces based on
the operational interface of the backend system. This approach is particularly
feasible for course—grained, loosely coupled systems, because there is a natural
mapping between the operational interface and a user interface. This is partic-
ularily useful for web services which connect loosely coupled systems.

The advantage of this approach is that no programming is required to build
a user interface. This makes it easy to deploy new services quickly and allow
access through a regular web browser. The downside of our approach is that
the look—and—feel of the user interface is determined by the generic bridge and
sometimes it still is preferrable to build a custom user interface.

3 Architecture

Figure 2 shows the overall architecture of the generic bridge. The bridge runs as
a CGI-script at the side of the web server. A general purpose connector allows

it to access different backend technologies, such as SMTP, SQL, CORBA, and
Web Services. As will be shown later, the generic bridge can be given “hints”
expressed in XML on how to render the user interface. The following sections
give a detailed overview of the various components of the generic bridge.

HTML
over HTTP Web Server

A
5 XML question-
) naire definition
4
QTool

Connector

A

CORBA Web Services SQL

Fig. 2. Architecture.

3.1 User interface model

This section introduces a general user interface model. The model defines the
basic building blocks that can be used to define a user interface. While there will
certainly be special cases where this user interface model is not powerful enough,
we believe that it can be used in a variety of different scenarios. A later section
will give an overview where the generic bridge has been successfully used.

The heart of the user interface model is the notion of a questionnaire. Ab-
stractly, a questionnaire is a user—friendly visualization of an operational inter-
face. A questionnaire is composed of one or more sections that allow the logical
grouping of questions. Sections can be nested (a section within a section) and
can furthermore be marked as repeatable. For repeatable sections, the user can
input more than one instances of this section.

Each section contains one or more gquestions. A question prompts the user
for one specific feature. It is rendered in the web browser as an input field. Each
question has an associated question type that determines the kind of response
that is expected from the user. Examples of question types are string, textfields,
external documents, etc. Table 2 gives a list of all the question types supported
by the generic bridge. Each question type is rendered as a specific HTML element
such as a drop—down list or a checkbox.

All components of the general user interface model (questionnaire, section,
question) can furthermore contain documentation that will be included in the
rendering of the questionnaire. In summary, the general user interface consists
of the following components:

| Type || Description

String One line text response
Textfield |[|Several lines text response
Email Email address

URL Web-URL

Bool Yes/No response

Checkbox || Yes/No response as a checkbox
Feature | Possible values: Yes/No/Unknown/Planned
Ranking ||Possible values: 1-10, N/A
Document| External document
Table 2. Question types

Questionnaire:

— Documentation

— List of Sections
Section:

— Documentation

— Can be marked as repeatable

— Contains one or more questions
Sections can be nested
Question:

— Documentation

— Can be marked as mandatory
Has a type (see Table 2)
— Question text

The questionnaire is defined through an XML document. Each of the compo-
nents of the questionnaire (sections and questions) are represented by appropri-
ate XML-tags. In that sense, the generic bridge defines a new XML-application
by providing the “vocabulary” to express the questionnaire. The following shows
an excerpt of a question definition:

<question name="DII" type="feature" mandatory='"no">
<doc>
The Dynamic Invocation Interface (DII) is part of the
client side API. With the help of the DII, a client can
construct method invocation at runtime without the need
for an IDL-generated stub.
</doc>
<query>
Dynamic Invocation Interface (DII)
</query>
</question>

The question above was taken out of a questionnaire for CORBA products.
This particular question asks about the availability of the Dynamic Invocation

Interface (DII) of a given CORBA product. The question type “feature” has
the following four possible values: yes (DII is supported), no (DII is not sup-
ported), planned (vendor plans to implement the DII) and unknown (it is un-
known whether the DII is supported). The question type “feature” is useful for
capturing the features of a product.

Based on the specification of the question a HTML-based user interface is au-
tomatically generated (see screenshot depicted in Figure 3). The documentation
of the question is displayed in a popup window when clicking on the hyperlink of
the question. The question type feature is rendered as a selection box (the user
has selected “Planned” in the screenshot). The other elements of the screenshot
displayed in Figure 3 such as the title “CORBA” or the section title “CORBA
Core” are also defined in the questionnaire and are described by appropriate
XML tags.

New CORBA Profile

Submit profile | Canu:ell

“[E]1. CORBA Core 1, CORBA Core

2

Dynamic Invocation Interface (DI): [Flanned |

Fig. 3. HTML-based interface for the DII question.

Since a questionnaire is based on an XML—-document, it is possible to describe
its syntax through an XML schema. This schema is itself an XML document, but
it describes the legal instances of a questionnaire. The following excerpt shows
the XML schema definition of a question. Note that the above example of the
DII question complies with the syntax defined here:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
[...]

<xsd:complexType name="QuestionType'">
<xsd:sequence>
<xsd:element name="doc" type="xsd:string"/>
<xsd:element name="query" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="type" type="xsd:string"/>

<xsd:attribute name="mandatory" use="optional" type="YesNoType"/>
</xsd:complexType>

[...]

</xsd:schema>

The above definition expresses that a question consists of a documentation
field and a query field. A question must have a unique name and type which
are specified as XML attributes. Furthermore, a question can be marked as
mandatory or optional. With the former the user is required to provide input
for that particular question.

3.2 Meta—questionnaire

In the previous section it was said that the schema of a questionnaire has to
be defined through an XML document. This XML document contains all the
information that are needed by the generic bridge to render a user—interface.
While this approach is very flexible, it requires the end user to provide an XML
document for each new questionnaire.

Since the emphasis of the generic bridge is end—user friendliness, it is not
acceptable to expect knowledge of XML. For this reason, a web—based man-
agement interface is provided that allows the definition and maintainance of
questionnaires.

To define a new questionnaire, the user has to fill out a special questionnaire
whose purpose is to ask for all the elements of the new questionnaire to be
defined. One important insight is that this “meta—questionnaire” is yet another
questionnaire. L.e., in order to define a new questionnaire, the user has to fill
out a special questionnaire. The special, or meta—questionnaire, contains all the
questions that need to be answered in order to define a new questionnaire.

The screenshot depicted in Figure 4 shows the rendered HTML interface of
the meta—questionnaire for the DII question introduced in the previous section.
First notice that the look—and—feel of the user interface is similar to that of
the DII question depicted in Figure 3. The various questions displayed in the
screenshot mirror the information that was specified in the XML document of
the previous section. This shows that new questionnaires can be defined using
the meta—questionnaire and without any knowledge of XML.

Using a meta—questionnaire has two main benefits. The first is that the user
is alleviated from having to have any knowledge of XML to specify new question-
naires. Instead the user can use the familiar user interface that queries everything
the generic bridge needs to know about the new questionnaire. The second ben-
efit it that the implementation of the bridge is greatly simplified. Instead of
having a separate management interface, questionnaires are managed through
the familiar user interface itself. The same code can be re—used.

— 2.2, Question

y < “~

Question text: (*) [Dynamic Invocation Interface (T
Question type: | feature |
Juestion mandatory: Mo w|

Question documentation: |The Dynamic Inwocation Interface
(DI} is part of the client side
BPT. With the help of the DII, =
client can construct method
invocation at runtime without
the need for an IDL-generated
=tub.

Fig. 4. Meta—questionnaire.

3.3 Connectors

So far we have discussed two different ways of defining a questionnaire: through
a XML document and via the meta—questionnaire. Another way to create ques-
tionnaires is to derive them from operational interfaces such as CORBA-IDL
or WSDL (Web Service Definition Language). A connector translates between
questionnaires and such operational interfaces. The translation requires mapping
rules. This mapping is bidirectional: questionnaires can be mapped to operational
interfaces and vice versa. In the following be focus on the former. Le., we assume
the existance of a questionnaire and mapping rules map this questionnaire to a
backend interface. The reverse mapping is subject to future work.

All the input that is collected by one questionnaire is called a profile. Once
the generic bridge receives a profile, it has to be forwarded to some backend
system. Thus the profile becomes the actual parameter for an invocation of the
backend system. The connector represents an abstract interface to various back—
end technologies (see Figure 5). Through inheritance, special purpose adapters
can be created. For each of the special purpose adapters one needs to define a
mapping between questionnaires to data types of the specific technology. In the
following we describe the mapping for various connectors.

Mail The mail connector collects all user responses to a questionnaire, marks
them up as an XML document and sends them to a designated email address.
This configuration is useful for user feedback via email. Unless the data is not

Connector
{abstract}

ID submit (profile)
profile retrieve (ID)
void delete (ID)

Fig. 5. UML diagram for the connector.

passed to another connector, the profile is simply sent as an email. The mail
connector by itself does not store the profile. Right now the content of this email
is an XML document. It is possible to add XSLT support to create a more human
readable mail.

Database In many cases it is desirable to store profiles in a database. The
profile becomes persistent and can be viewed and edited at a later point in time.
For this reason our generic bridge includes a connector for relational databases.

Unlike the mail connector described in the previous subsection, the database
connector requires a mapping of a questionnaire to a relational database schema.
This mapping is defined once and then implemented within the database con-
nector, so that the schema for the database can be automatically created out of
the questionnaire definition.

Mapping of a questionnaire to a relational database schema is straightfor-
ward. Each question in the questionnaire is mapped to a column of a table
representing the questionnaire (see Appendix A). Retaining the logical grouping
introduced by sections is not necessary, so that the structure is flattened into a
set of questions.

Repeatable sections pose a special challenge since a profile can contain mul-
tiple instances of this section. It is not known a priori how many instances a
user might supply. For each instance the schema of the table would need to be
extended by adding an appropriate number of columns. One way to map re-
peatable sections is to introduce a second table whose columns represent the
questions in that repeatable section. Multiple instances of this section are repre-
sented by different rows of that table. Those rows that belong to one profile are
linked via a forgein key of the relational database with the table representing
the questionnaire itself.

CORBA A CORBA connector acts as a bridge between a user and a CORBA
backend. Profiles submitted by the user are forwarded via CORBA object invoca-
tions to a backend server. Since in CORBA the interface of an object is specified
via the Interface Definition Language (IDL), a questionnaire must be mapped

to an IDL-specification. The connector is then using the Dynamic Invocation
Interface (DII) to translate profiles to object invocations.

A questionnaire is mapped to a CORBA interface. Each question type is
mapped to an appriopriate CORBA type. Sections are mapped to an IDL-
structure. The nesting of structures mirrors the nesting of sections. In the case
of CORBA, repeatable questions pose less of a problem than with the database
connector discussed in the previous section. A repeatable section is mapped to
an IDL-sequence that can have zero or more instances of that section.

‘Web Services The mapping for web services is similar to the one described
for CORBA in the previous section. In web services, the interface of an object
is defined through the Web Service Definition Language (WSDL). Just as for
CORBA, a mapping needs to be defined to map a questionnaire to a WSDL
specification. The web service connector generates SOAP messages based on the
schema of a questionnaire.

The web services mapping follows the same pattern as the mapping for
CORBA. Question types are mapped to appropriate WSDL types. Sections are
mapped to structures. Repeatable sections are mapped to sequences of struc-
tures.

4 Implementation

The concepts described in this paper have been implemented and have become
known under the name QTool (for questionnaire tool). QTool is implemented
using the scripting language Python (see [5]). Python has proven to be very
suited for this kind of application. In our opinion it is easier to learn and maintain
than Perl. In this section we describe some of the implementation details.

4.1 Commands

QTool runs as a CGI script invoked by the web server. Both Apache and Mi-
crosofts IIS are supported. The functionality of QTool can be accessed through
the usual GET and POST conventions of the HTTP protocol. E.g., to get an
empty questionnaire for a schema called “CORBA”, the following URL need to
be invoked:

http://<host>/cgi-bin/qtool.cgi?ACTION=NEW&PROFILE=CORBA

There are several different commands with different arguments that can be
accessed in a similar way. These URLs can be used as hyperlinks of anchors
within a custom HTML page. It is also possible to access the functionality
of QTool through Server Side Includes (SSI). With this technology a specially
marked up HTML page contains inline calls to a CGI script. The web server will
replace those inline invocations with the output generated by the CGI script.
This allows custom HTML pages that embeds the output of QTool in a very
flexible way.

4.2 PSP

QTool is implemented in Python and is invoked as a CGI script from a web
server. The scripts main task is to generate HTML that is rendered in the
client’s browser. There are different approaches to generating the HTML, one
popular one being Java Server Pages (JSP). In JSP, the web page is interspersed
with Java code that emits the dynamic part of that page. Several projects have
adopted this scheme for Python, which consequently is called Python Server
Pages (PSP) (see [1]).

One challenge of PSP in contrast to JSP is the fact that in the language
Python programming blocks are marked through different indentation levels.
Therefore, instead of marking a block with ’{’ and ’}’ as done in Java, the
statements belonging to a block in Python have the same indentation level.

This poses a challenge when applying the JSP idea to Python, because it is
difficult to maintain the indentation level when HTML code is interspersed in a
Python program. One solution to this problem is to extend the Python language
by adding explicit begin and end markers for programming blocks, as done in X.

For QTool we have taken a different approach. While JSP is based on the
principle “HTML code with interspersed Java code,” our version of PSP reverses
this principles to “Python code interspersed with HTML code.” The Python code
defines the level of indentation and the HTML part is embedded naturally at
the respective indentation level. The following example illustrates this:

PSP code
for i in range (10):
<!
Hello World.
<P>
>
<!
The end.
>

An HTML block is enclosed with the markers “<!” and “!>”. Inside this
block all code is treated as HTML and not as Python code. Note that the embed-
ded HTML code follows the indentation rules of Python. The PSP code above
will generate ten “Hello World” followed by one “The end.” In the generated
HTML code, the whitespaces that are required to mark the level of indentation
within the PSP program will be removed.

Similar to JSP, our adaptation of PSP allows the embedding of Python ex-
pressions within an HTML block. The following code excerpt illustrates this:

PSP
numbers = [’one’, ’two’, ’three’, ’four’, ’five’]
<!
Counting from 1 to 5:
>
for i in numbers:
<!
Number <% i %>.

>

4.3 Connectors

One of the central concepts in QTool is that of a connector that serves as an
abstract interface to various backend technologies. Since QTool is written in
Python, specific connectors need to be implemented as derived classes in Python.
The mail connector uses Python’s builtin SMTP library. The CORBA connector
uses Fnorb; a Python-based CORBA implementation (see [7]). For web services,
QTool makes use of of SOAPpy, a web service implementation for Python (see
[8]). Finally, the relational database connector makes use of a Python interface
to MySQL (see [3]).

4.4 Examples

The concepts presented in this paper have been sucessfully implemented. The
resulting implementation is placed under the GPL license and can be downloaded
from http://wuw.puder.org/qtool/. QTool has been used for various projects.
One of them is the the San Francisco Movie page that lists movies made in that
city. Besides the movies, this page also shows locations where certain scenes of
a movie have been made. This feature makes use of repeatable sections, where
a section called “Location” is marked as repeatable.

Another project where QTool has been used is the CORBA Product Matrix.
This page gives a visual overview of the features of over two dozen CORBA
products. Both the movie page and the CORBA product matrix use the database
connector to store and maintain the information submitted by the user. The
QTool homepage mentioned in the previous section containts links to those two
QTool applications.

QTool has also been used within AT&T Labs for product evaluations. The
relevant criteria of the product under evaluations are collected in a question-
naire for further analysis. A team of experts can easily submit their feedback
by answering the evaluation questionnaire. In a different project within AT&T
Labs, QTool is used as a generic front—end for a workflow engine. This particular
application uses the web services connector to talk to the workflow engine.

5 Related work

We take a pragmatic approach to define the general user interface model. This
model is inspired by the recurring design pattern of operational interfaces. This
facilitates the mapping between operational and user interfaces. Question types
have a natural mapping to types of various backend technologies. Repeatable
and non-repeatable section can be mapped to constructed data types.

Web service technologies often include test interfaces where a primitive web—
based user interface is automatically generated out of a WSDL (Web Service
Definition Language). These are generally only meant for testing purposes and
do not support complex data types. Examples are .NET, WebLogic Server, or
XML Gateway. In previous work we have demonstrated that a knowledge repre-
sentation technique called Conceptual Graphs can be used as a generic interface
to CORBA’s DII (see [6]). While very flexible, this approach is not suitable for
end users.

Other approaches for general user interfaces focus on the data modelling
aspect and usually have some cognitive model of the real world at the core of
their design. Examples are the embodied construction grammars (see [2]) or the
formal concept analysis (see [4]). While these approaches offer comprehensive
solutions to represent arbitrary domain knowledge, they are too heavy-weight
and not user friendly for general purpose user interfaces.

6 Conclusion and Outlook

Interoperability is one of the key issues when developing distributed applications.
Interoperability is an end—to—end issue that spans from the user front—end to
the backend. One prominent way to implement user front—ends is via a web—
browser. In this paper we have introduced a way to dynamically create user
interfaces for different backend technologies such as relational databases and
different middleware technologies.

One future extension will revolve around the layout of the user interface.
Currently, the layout is hard—coded in the implementation itself. We plan to use
XSLT to change the look—and-feel through XSLT-style sheets. As another exten-
sion we intend to take a closer look at WSDL, the interface definition language
for web services. Since both QTool questionnaires and WSDL are expressed
through XML, it might be an interesting idea to merge these two formats.

A Mapping

The table below summarizes the mapping of the various question types to SQL,
CORBA, and Web Services types. Note that the mapping is bidirectional. All
question types have a corresponding mapping for the various backend technolo-
gies discussed here. The SQL mapping makes use of builtin types and tables.
The CORBA mapping uses IDL-types to map the various question types. The
web service mapping makes use of types defined in XML schema. Currently some

types (e.g., a CORBA-struct) can not be mapped to a questionnaire. While a
mapping is possible, this will be subject to future work.

|Type [sQL |[CORBA WS

String TINYTEXT string <xsd:string>
Textfield MEDIUMTEXT string <xsd:string>
Email TINYTEXT string <xsd:string>
URL TINYTEXT string <xsd:string>
Bool ENUM boolean <xsd:boolean>
Checkbox ENUM boolean <xsd:boolean>
Feature ENUM enum <xsd:enum>
Ranking ENUM enum <xsd:enum>
Document LONGBLOB sequence<octet> |<xsd:sequence>
Questionnaire TABLE interface <service>
Non-repeatable section| TABLE struct <xsd:sequence>
Repeatable section TABLE (foreign key)|sequence<struct>|<xsd:sequence>

References

1. R. Barr. Python Server Pages. http://spyce.sourceforge.net/, SourceForge, Cornell
University, 2002.

2. B. Bergen and N. Chang. Embodied construction grammar in simulation-based lan-
guage understanding. In Jan Ola Ostman and Mirjam Fried, editors, Construction
Grammars: Cognitive and Cross—Language Dimensions. Johns Benjamins, 2002.

3. A. Dustman. MySQL for Python. http://sourceforge.net/projects/mysql-python/,
SourceForge, 2003.

4. F. Lehmann and R. Wille. A Triadic Approach to Formal Concept Analysis. In 3rd
International Conference on Conceptual Structures (ICCS’95), Santa Cruz, Univer-
sity of California, 14-18 August 1995. Springer Verlag.

5. M. Lutz. Programming Python. O’Reilley & Associates, second edition, 2001.

6. A. Puder and K. Romer. Use of Meta—Information in a CORBA Environment.
In Workshop on CORBA: Implementation, Use and Evaluation, Jyvskyla, Finland,
1997. European Conference on Object-Oriented Programming (ECOOP).

7. R. Smith. Fnorb: A Python-based @CORBA implementation.
http://sourceforge.net/projects/fnorb/, SourceForge, Distributed Systems Tech-
nology Centre (DSTC), 2002.

8. C. Ullman and B. Matthews. SOAPpy: Web Services for Python.

http://sourceforge.net /projects/pywebsves/, SourceForge, 2003.

