
0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 1 7

open source
E d i t o r : C h r i s t o f E b e r t � A l c a t e l � c h r i s t o f . e b e r t @ a l c a t e l . c o m

T
he Common Object Request Broker Ar-
chitecture is a specification for creating,
distributing, and managing distributed
program objects across a network. Both
the International Organization for Stan-
dardization and X/Open have sanctioned

CORBA as the standard middleware
architecture for distributed objects.
CORBA was specifically designed to
support heterogeneous environ-
ments, different vendors’ products,
and several popular programming
languages. Numerous implementa-
tions of the CORBA specification ex-
ist today, both in the commercial
and the open source domain.

MICO (www.mico.org) is one
such implementation; I and several

other developers are its cofounders. In this col-
umn, I’ll discuss MICO’s internal architecture
and then offer a few guidelines to help you
choose the right CORBA implementation for
your purposes.

MICO overview
Inspired by the GNU project, the name

“MICO” stands for “MICO Is CORBA.” Seven
years after the first public release, MICO has
evolved into a mature open source project,
with close to a half million lines of source code
contributed by more than 150 programmers. In
1999, an international, technology-neutral ven-
dor consortium called the Open Group offered
MICO a free license of its CORBA test suite.
MICO passed several thousand test cases, so
the Open Group awarded it its CORBA compli-
ance brand. Today MICO is used in both acad-
emia and industry. The largest known commer-
cial deployment is with the Weather Channel,
which broadcasts weather forecasts in the US
and uses MICO to collect and distribute weather
data throughout North America.

Implementing CORBA, a voluminous specifi-
cation occupying thousands of pages, in MICO
required us to make several important design
decisions. We based MICO’s internal design on
a microkernel approach. Its Object Request
Broker is simple: the ORB can only connect ob-
jects in the same address space. We moved all
extra functionality, such as the Internet Inter-
ORB Protocol (IIOP) and the Portable Object
Adapter (POA), into special-purpose adapters

MICO: An Open Source
CORBA Implementation
Arno Puder

Welcome to a new column on open source software. As more people try to incorporate
OSS into their products, having a list of potential products and some meaningful com-
parison among them seems useful. This column promotes sharing of specific OSS experi-
ences from a user perspective. Our aim isn’t to drag people away from proprietary
(closed) software but rather to gather and disseminate users’ feedback on the many
available OSS components and tools.

This inaugural column is on MICO, an OSS implementation of CORBA. Despite the
growing availability of other middleware, CORBA is still broadly used and evolving, espe-
cially for heterogeneous environments.

I look forward to hearing from you, both readers and prospective column authors,
about this column and the products and tools you want to know more about. If you’d like
to write for this column, see the sidebar of author guidelines. —Christof Ebert

1 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DEPT TITLE

outside the ORB. A microkernel ap-
proach yields a modular, extensible ar-
chitecture, an especially important fea-
ture for programmers who want to
contribute. MICO’s ORB is particularly
extensible: new functionality can be
plugged into it without affecting the
rest of the system, even at runtime. This
approach has been successfully used for
pluggable transport mechanisms, in
which different transport layers can be
added to MICO. As proof of concept,
MICO supports UDP (User Datagram
Protocol).

The IDL (Interface Definition Lan-
guage) compiler’s implementation fol-
lows similar design principles in terms
of modular and extensible architec-
ture. In MICO, the IDL compiler and
the Interface Repository (IR) are
closely related: the IR stores the ab-
stract syntax tree that the IDL com-
piler’s front end creates. By doing so,
MICO achieves maximum reuse of its
own components. The fact that an IDL
specification described the IR’s inter-
face posed an interesting engineering
problem: the IDL compiler depends on
the IR, and vice versa. The latter de-
pendency occurs because the IR is a
regular CORBA object and thus requires
stubs and skeletons that the IDL com-

piler normally creates. We can solve
this chicken-and-egg problem via a
bootstrap process. As a result, MICO’s
source code contains code that was au-
tomatically generated during the boot-
strap process. Another consequence of
this architecture is that the stubs and
skeletons generated by the IDL com-
piler are the same for all platforms. So,
this generated code must be generic
enough to be compiled by all C++
compilers.

MICO is completely written in C++.
Initially, MICO only supported the
GNU C++ compiler. As MICO’s user
base grew, demand for different compil-
ers began to surface. Over time, we
ported MICO’s source code to various
C++ compilers—a tedious task. We
were surprised at how different various
C++ compilers can be. Internally,
MICO makes extensive use of the Stan-
dard Template Library, whose many
useful data structures facilitate the im-
plementation of C++ programs. The
STL’s downside is that it’s built using
C++ templates, and only a few C++
compilers offer good support for tem-
plates. Some C++ compilers and linkers
can’t remove duplicate template instan-
tiations, resulting in huge binaries. Al-
though this isn’t MICO’s fault, it some-

times has been called bloated because
of this.

Users often ask why MICO doesn’t
support Java. Most people don’t realize
that supporting another language basi-
cally means reimplementing the com-
plete ORB. Just adding a new back end
to the IDL compiler isn’t sufficient; the
ORB library also must be ported to the
other language. Our response to such
requests is that MICO supports C++
well and that Java users can find other
open source implementations such as
JacORB. Because interoperability is no
longer a vision but a reality (perhaps
not for Web Services but definitely for
the CORBA domain), IIOP seamlessly
connects components written in differ-
ent programming languages.

Choosing a CORBA
implementation

Managers must often choose a spe-
cific CORBA implementation for their
project, but guidelines for doing so
aren’t clear-cut. They might have to
choose among dozens of CORBA imple-
mentations, with different strengths
and weaknesses. Yet, asking a few ba-
sic questions can help narrow the field.

� Which programming language are we

OPEN SOURCE

Table 1

Product feature matrix of CORBA implementations
Asynchronous CORBA

Interface Minimum messaging Component Notification
Product Open source C++ Java SOAP repository CORBA interface Model Security service

Visibroker No Yes Yes Yes Yes No No No Yes Yes
(www.borland.com/
visibroker)
JacORB Yes No Yes No Yes No Yes No Planned Yes
(www.jacorb.org)
JDK 1.4 No No Yes Planned Planned No No No No No
(http://java.sun.com/
j2se)
MICO Yes Yes No No Yes Yes Planned Yes Yes Planned
(www.mico.org)
Orbix 2000 No Yes Yes Yes Yes No Yes No No Yes
(www.iona.com)
Tao Yes Yes Planned No Yes Yes Yes Planned Yes Yes
(www.theaceorb.com)

J u l y / A u g u s t 2 0 0 4 I E E E S O F T W A R E 1 9

using? Some CORBA implementations
support only certain languages and
therefore aren’t suitable for projects
that require some other programming
language.

� Which compiler are we using? The
quality of compilers (especially C++
compilers) varies greatly. So, be sure
that the CORBA implementation sup-
ports the compiler you want to use.

� Which operating system are we us-
ing? Different operating systems of-
fer significantly different features.
Be sure that the CORBA implementa-
tion supports the operating system
you want to use. This is particularly
true for embedded systems.

� What features do we need? Differ-
ent projects have different require-
ments. Not all CORBA implementa-
tions support such features as the
CORBA Component Model, Objects
by Value, or multithreading.

� What license is acceptable? Open
source CORBA implementations are re-
leased under different licenses that
might affect a project. For example, all
modifications to an ORB under the
General Public License (a “GPLed

ORB”) must be published; for BSD-
style licenses, this isn’t necessary.

I maintain a CORBA product matrix
on the Web (www.puder.org/corba/
matrix) that lists several dozen com-

mercial and open source implementa-
tions for different languages and plat-
forms. The matrix provides a quick
overview of which features are sup-
ported by or planned (by vendors) for
each CORBA implementation. Table 1,
an excerpt from the Web page, notes
the key differentiators of some popular
CORBA implementations. I hope these
charts, here and online, help you
choose the right implementation for
your project.

Arno Puder is an assistant professor of computer science at
San Francisco State University. Contact him at arno@puder.org.

OPEN SOURCE

Author Guidelines for Future Columns
Select one open source software component, tool, product, or product group

that you’ve used. Focus on why you chose it, what its benefits are, how it con-
trasts with competing components (OSS or commercial off-the-shelf), and what
lessons learned might aid other practitioners. For your column to be useful, your
report must come from in-depth experience rather than a superficial, one-
weekend evaluation.

You may review a single tool or product (such as a GNU or Eclipse item) or
a vertical product group (such as defect-tracking tools, middleware, or work-
flow management tools).

Evaluate the OSS components in a concrete, fairly broad application context
and present the information in a neutral style. If authors follow a similar style,
readers will have easier access to the information.

Preferably, you are an OSS user rather than a primary author or key con-
tributor. Typically, authors don’t work for an independent software vendor or
packaging company. You can’t be zealous nor hostile toward OSS, as this
would bias the evaluation and reduce credibility.

Present feature comparisons of different OSS products and other data in
chart format, if possible.

Send your column proposal and author qualifications to Christof Ebert at
christof.ebert@alcatel.com.

Writers
For detailed information on submitting
articles, write for our Editorial Guidelines
(software@computer.org) or access
www.computer.org/software/author.htm.

Letters to the Editor
Send letters to

Editor, IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or daytime
phone number with your letter.

On the Web
Access www.computer.org/software for
information about IEEE Software.

Subscribe
Visit www.computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine
subscriptions to address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE
and Computer Society membership to
member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received a
damaged copy, contact help@computer.org.

Reprints of Articles
For price information or to order reprints,
send email to software@computer.org or
fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact the Intellectual Property Rights
Office at copyrights@ieee.org.

How to
Reach Us
How to

Reach Us

