XML11 — An Abstract Windowing Protocol

Arno Puder

San Francisco State University
Computer Science Department
1600 Holloway Avenue
San Francisco, CA 94132
arno@sfsu.edu

Abstract

This paper describes XML11, an abstract windowing protocol inspired by the X11-
protocol develop by MIT. XML11 is an XML-based protocol that allows asyn-
chronous UI updates of widgets to an end-device. To overcome high-latency con-
nections, XML11 allows migration of application logic to the end-device. Implicit
middleware enables transparent interaction between the end-device and the server.
The middleware is implicit, because the programmer is unaware of the distribution.
The prototype implementation of XML11 runs in any standard web browser with-
out Java capabilities on the client-side and replaces AWT /Swing on the server-side.
This also allows us to expose legacy AWT /Swing applications as web applications.

1 Motivation

The X11-protocol was developed by MIT in 1984 (see [14]). The X11-protocol
distinguishes between a client and the X11-server (see Figure 1). The X11-
server runs on a host with a graphical display. One or more clients that run
on different machines can render their output on the remote X11-server by
way of the X11-protocol. The X11-protocol is characterized by pixels and
rectangles; the X11-server has no knowledge of widgets such as buttons or
list-boxes. These have to be drawn manually by a client. This explains the
many different looks-and-feels of X11-applications. One consequence of this
is relatively high protocol overhead. The X11-protocol works best on high-
bandwidth, low-latency communication networks.

The X11-protocol is therefore not suitable for wide area networks with high-
latency connections. The World-Wide Web (WWW) has established itself suc-
cessfully in this domain. One can draw a comparison between the WWW and
the X11-protocol: a standard web browsers serves a similar purpose as the

Preprint submitted to Elsevier Science 30 August 2005

apple =

plum
b Shell - p -0%
plum:~§ xlogo -display apple:ill ﬁ

X11-Protocol

=l

X11-Client

X11-Server

Fig. 1. The X11-protocol.

X11-server in the way that both act are generic interfaces to a user. However,
a web browser has knowledge of basic widgets such as labels and button and
a browser is usually also capable of executing code. Initially the WWW was
document centric and was only meant to serve documents in a distributed en-
vironment. With the rise of the WWW, new standards such as HTML-Forms
and Common Gateway Interface (CGI) have extended this document-centric
model to allow operational interaction between client and server. Parallel to
the web technologies, new kind of end-devices such as PDAs or mobile phones
have entered the scene that serve as generic clients to remote services. The
document-centric protocols of the world-wide web are even less suitable for
these devices.

This paper proposes a new protocol that we call XML11. It is inspired by the
X11-protocol, but based on XML to define the PDUs (Protocol Data Unit).
XML11 makes use of advanced capabilities found in typical end-devices such
as the ability to render widgets and execute application logic. In Section 2 we
describe the XML11 framework and present a detailed overview of the XML11-
protocol. Section 3 describes our prototype implementation of XML11 that
allows legacy Java/Swing applications to be controlled from a non-Java aware
web browser. In Section 4 we discuss related work and the paper concludes
with an outlook in Section 5.

2 Framework

We describe our framework in several steps. Section 2.1 introduces the de-
sign goals of XML11. Section 2.2 describes the XML11 protocol. Section 2.3
explains the code migration framework embedded in XML11 and finally in
Section 2.4 we discuss the idea of implicit middleware as part of the code
migration framework.

2.1 Design goals

Before introducing the design goals for XML11, we first make some assump-
tions of the underlying technology. These assumptions are derived from today’s
technology in use. We make the following assumptions regarding the capabili-
ties of an end-device: first we assume that the end-device has its own window-
ing system that knows about widgets such as buttons, labels, or checkboxes.
Those widgets are rendered using the native look-and-feel of the end-device.
Furthermore we assume that the end-device provides an execution platform
that is capable of running business logic. The execution platform is expected
to be Turing-complete, but we do not impose any specific programming lan-

guage.

Two possible end-devices that fit those assumptions are standard web browsers
or PDAs. Both are capable of rendering a user interface and both allow the
execution of business logic. In case of the web browser, widgets can be ren-
dered using standard HTML elements. Literally all browsers offer a Turing-
complete execution platform either through JavaScript, Java, or ActiveScript.
All browsers support a common subset of JavaScript.

Another assumption we make is that the end-device is connected to the server
by a low-latency, medium-bandwidth network connection. Based on those as-
sumptions, XML11 has the following design goals:

e Device independence: XML11 should not make any specific assumption
about the end-device except those outlined above.

e Code migration: To support high-latency connections, XML11 supports
code migration of business logic to the end-device.

e Operational interaction: The migrated code can do remote object invoca-
tions to the server side.

2.2 XMLI11 Protocol

The core of our framework is the XML11 protocol. Its name is inspired by
the X11 protocol because it serves a similar purpose. Unlike the X11 protocol,
XML11 is not a binary protocol, but an XML-based protocol. This means that
all PDUs are expressed as XML documents. In terms of a protocol, we will
adopt the following terminology: the server hosts the application whose Ul
is rendered remotely. The end-device is the client where the user interface is
rendered and that interacts with the remote server.

XML11 is an asynchronous, event based protocol. The server and the end-
device send PDUs in response to certain events. On the server side a typical

<xmlll>
<create id="1">
<label x=“0” y=“0”>Phone</label>

</create>
<create id=“2">

_ <input x="“50” y="0” maxlen="14"/>
</create>

<create id="3">
<button x="0"” y="20"” label="Submit”/>
</create>
</xmlll>

Ul/Model Updates, Code

End-Device Server

Events, Model Updates

<xmlll>
<update id=%“2">1-415-555-1212</update> -
<event id=“3” type=“clicked”/>
</xmlll>

Fig. 2. XML11 Protocol Overview.

event is the creation or update of a widget. On the end-device an event is
raised whenever the user interacts with the UI, such as pressing a button.
Figure 2 gives a conceptual overview of the XML11 protocol. The server sends
a PDU to the end-device requesting it to draw a label, an input field and a
button. Each of these widgets have additional attributes that describe features
of the particular widget (such as position).

The end-device, receiving this PDU, will render the UI accordingly. The user
can now interact with the Ul and fill in the input field. When pressing the
button, the end-device sends a PDU back to the server. The PDU, as shown
in Figure 2, contains a model update that informs the server of the value the
user has provided in the input field. Furthermore, the PDU contains the type
of event; in this case a button-click. The server would queue the event with
the application. During the processing of the event, the application will send
itself further updates in form of XML11-PDUs to the end-device.

Conceptually, this is similar to the HTTP/HTML protocol of the WWW.
However, there are some important differences: in the WWW, only complete
HTML-pages are transported to the browser. In XML11, individual widgets
are sent to the end-device. HT'TP is also a strict client/server protocol where
the web browser always initiates the interaction. In XML11, the server can
also send PDUs independently to the end-device. In this regard, XML11 is
more similar to the X11-protocol. However, while the X11 protocol is about
pixels and lines, XML11 knows about widgets. Table 1 gives an overview of

XML11 Element Description
<property> Properties of the end-device.
<button>, <label>, | Standard GUI widgets. Based on XUL.
<input>
<create>, Create, update and destroy widgets.
<new-value>,
<destroy>
<event> UI events raised by client and sent to

server.
<update> Model updates sent by client and server.
<code> Code migration framework.
Table 1

XML11 Protocol Elements
the various XML11 PDUs.

The end-device communicates its capabilities (such as screen resolution, sup-
ported fonts and widgets) to the server via the <property> tag. The XML-
tags used to describe widgets are based on XUL (see [19]). XUL is an XML-
based user interface description language developed by the Mozilla project.
Mozilla-based browsers use XUL to describe their own modal dialogs. In
XML11, widgets described through XUL can be created and destroyed individ-
ually by appropriate tags <create> and <destroy>. The XML11 protocol
further defines tags to relay events (such as mouse clicks) from the end-device
to the server, as well as tags that allow code migration.

2.3 Code Migration

Our framework includes code migration to overcome network latencies by mov-
ing some of the application logic to the client. Table 1 in the previous section
already introduced the <code> element of the XML11 protocol, which will be
explained in more detail in this section. If the server wants to migrate some
application logic to the client, it includes the implementation between the
<code> element. Any programming language would be a suitable candidate
for the implementation, but since we make no assumption on what languages
are supported by the client, we decided for an XML-based programming lan-
guage. The benefit of using XML is that is integrates nicely with the rest of
the XML11 protocol.

Several XML-based programming languages exist (see [3,10,11,6,9]), however
those languages are impractical for day-to-day programming. First and fore-

most programmers have to learn a new programming language. Someone using
this approach would need to master a new programming language for which
no tools (such as smart editors or syntax checkers) exist. Another problem
results in the fact that XML tends to be very “verbose”. By this we mean
that it takes on the average more lines of code to express an algorithm in
XML than in other high-level languages. This is because of the rigid syntax
that XML imposes on the structure of a document. For these reasons we took
a different approach.

The XML-based programming language that is used to migrate code is based
on the instruction set of the Java Virtual Machine. The instruction set, also
referred to as byte code, resembles the machine code of other hardware ar-
chitectures. It is interesting to note that Sun Microsystems as the inventor
of Java never standardized an assembly language of the their own byte code.
Several assemblers were developed, but they had to invent their own syntax.
The most commonly used assembly syntax stems from the Jasmin project (see

[13]).

Our XML-based programming language is based on the Java byte code. This
effectively defines an assembly language for the Java virtual machine whose
syntax is based on XML. Since we model the syntax very closely to the Java
byte code instructions, there is a direct bidirectional mapping between Java
class files and our XML-based programming language. Since the XML-based
programming language is closely related to the byte code of the Java virtual
machine, we call this language XMLVM.

XMLVM is just an intermediate representation. When migrating code to the
end-device, the XMLVM program has to be translated to the target program-
ming language. To which programming language the XMLVM will be trans-
lated depends on the capabilities of the end-device. One way to translate
XMLVM to another programming language is via an XSL-stylesheet. XSL is
a technology whereby an XML document can be translated to some other
representation. The translation rules are expressed themselves in XML (see
[16]).

The following example illustrates this. The XMLVM instruction <iadd> pops
two integers from the top of the stack and then pushes the sum onto the
stack. If the end-device is a standard web browser and we further assume
that the only supported language inside the browser is JavaScript, we need
to translate <iadd> to JavaScript. The following XSL-excerpt describes a
transformation rule, that will generate some JavaScript code whenever the
<iadd> instruction is encountered in XMLVM:

Java Java to XMLVM > XMLVM

Language transformation

JavaScript ActiveScript

Fig. 3. XMLVM.

<xsl:template match="iadd">
<xsl:text>

__op2 = __stack[--__spl; // Pop operand 1
__opl = __stack[--__sp]l; // Pop operand 2
__stack[__sp++] = __opl + __op2; // Push sum

</xsl:text>
</xsl:template>

The variables shown in this example (e.g., __opl, __sp) are declared as part
of the XSL-translation for every method. They are used to mimic the stack
machine. Every XMLVM instruction is mapped to JavaScript via its own
XSL-template. The set of all XSL-templates is referred to as language trans-
formation in Figure 3. Different XSL-templates can be created for different
programming languages. While this is a very simple mapping, it is easy to im-
plement and usually efficient enough for code running on the end-device. The
implementation section will provide more details on the translation process.

One question we have not yet addressed is which portions of the application is
migrated to the client. This is not a trivial task and depends on many different
factors. A likely candidate for functionality to be migrated to the end-device
is user input validation which helps to overcome communication latencies. On
the other hand, code that requires resources only located on the server-side
cannot be migrated. For our prototype implementation, we have chosen a
pragmatic approach whereby an external configuration file determines which
classes to migrate to the end-device.

2.4 Implicit Middleware

Generally it is not possible to migrate the complete business logic to the
end-device. For one, the size of the application might be too big to allow to
migrate the complete code to the end-device. Another reason could be that
the application uses fixed resources (such as databases or special purpose
hardware) that cannot be migrated. For all practical purposes, only part of
the business logic will be migrated to the end-device. The implication is that

this might necessitate remote object invocations. This will invariably happen
when an object residing of the end-device makes an invocation to an object
located on the server-side.

Remote invocation can easily be handled by a middleware. Using middleware
ensures the notion of transparency where local invocations cannot be distin-
guished from remote invocations. This transparency is typically achieved by
proxy-objects because the proxy offers the same interface as the remote object.
The proxy marshals actual parameters and forwards them to the remote ob-
ject. Since XML11 is an XML-based protocol, we have decided to use SOAP
messages (see [18]) for remote method invocations. Whenever remote invo-
cations are necessary, SOAP requests and replies are exchanged to pass the
actual parameters.

The novel idea in our XML11 framework is how the proxies are generated. Web
Services allow the description of object interfaces through the Web Services
Definition Language (WSDL) (see [17]). WSDL is itself an XML document
that describes the specifics of an object interface. Based on the WSDL speci-
fication, a compiler can generate the proxy objects. In XML11 we bypass the
generation of WSDL. The signatures of remote operations are derived from the
XMLVM version of the remote class. To illustrate this, consider the following
simple Java-class:

public class Calculator {
public int add(int x, int y)
{
return x + y,;

¥

In the following we assume that class Calculator is not migrated to the end-
device, so that any part of the migrated business logic using this class will
need a proxy in order to access remote instances of Calculator. Even though
Calculator is not migrated to the end-device, we can translate it to XMLV M:

<method name="add" isPublic="true" stack="2" locals="3">
<signature>
<return type="int" />
<parameter type="int" />
<parameter type="int" />
</signature>
<code>
<var name="this" id="0" type="Calculator" />
<var name="arg0O" id="1" type="int" />
<var name="argl" id="2" type="int" />
<iload type="int" index="1" />

<iload type="int" index="2" />
<iadd />
<ireturn />
</code>
</method>

This code shows how the two actual parameters are first pushed onto the
stack using <iload> and then how the sum is computed and returned us-
ing <iadd> followed by <ireturn>. Also note that the XMLVM version of
class Calculator contains the complete signature of method add. A tool con-
structs the proxy for class Calculator by inspecting this signature and then
generating the marshaling code for method add. The marshaling code is gen-
erated in XMLVM and replaces the actual implementation of method add of
the <code>-tag. By generating the mashaling code in XMLVM, we can easily
translate the implementation of the proxy to the target language supported
by the end-device using the same XSL-translations used for code migration.
The reason we call this approach implicit middleware is because the use of
middleware is completely transparent for the application programmer.

3 Prototype Implementation

We have implemented a prototype of XML11 based on the framework intro-
duced in the previous section. Figure 4 shows the architecture of our imple-
mentation. For the end-device we use a regular web browser such as Firefox
or IE. However, we do not require or assume the availability of a Java VM
inside the browser. The client-side of the XML11 protocol is implemented in
JavaScript which is commonly available in all browsers. We use the JSolait
JavaScript library (see [7]) to transport the XML11 PDUs via HTTP-POST
requests. To implement the event-driven model described in the previous sec-
tion, we use deferred HT'TP-POST responses. A response to the HTTP-POST
is deferred until the server wants to send an XML11 PDU to the end-device.

On the server-side, the application is embedded inside the application server
Tomcat (see [1]). The server-side implementation of the XML11 protocol is
done in Java. We have chosen to implement the server-side protocol of XML11
as AWT (Abstract Window Toolkit) peer components by implementing the
abstract base class java.awt.Toolkit. This approach guarantees that the
AWT-API is unchanged which means any AWT-application can render its
user interface via XML11 inside a standard web browser.

We implemented the XMLVM programming language using the Byte Code
Engineering Library (BCEL, see [5]). BCEL allows to analyze the contents of
a Java class-file, which makes it easy to generate XMLVM out of any class-file.

Tomcat

| |

| |

| |

| |

l l

| |

Web Browser } ;
{ XMLI1 over HTTP | i
| XMLI1 Tookit | XMLVM |

| |

| |

| |

| |

| |

XMLI11 Client]

XMLI1 Server

Fig. 4. Reference implementation.

We use XSL to translate the resulting XMLVM to the target language, which
in our case is JavaScript.

A complete scenario using XML11 looks as follows: the user types in a URL
into the browser. Based on the URL, the browser issues an HT'TP-POST to
the application server. The parameters (which application to run and which
parts of the application to migrate to the browser) are encoded in the URL.
The application server launches the application and responds to the browser
with a bootstrap library written in JavaScript. This JavaScript code imple-
ments the client-side of the XML11 protocol. As the application runs within
the application server, widgets are created via XML11’s own AWT toolkit.
This results in appropriate XML11 PDU to be sent to the client. These asyn-
chronous updates that are sent from the server to the browser are transported
via responses to an HTTP-POST.

As a proof-of-concept we have implemented a moderately complex application
that uses some common widgets. Figure 5 shows a screenshot of the application
running as a Java desktop application. The application uses widgets Label,
Button, List, TextField, and TextArea. It also uses a Panel with a custom
paint-method for the image shown in the screenshot. Furthermore, the ap-
plication uses the following layout managers: GridBagLayout, BorderLayout,
and FlowLayout. At the bottom of the window, the current date and time are
updated every second. The application consists of 650 lines of Java code.

Using XML11, this application can be run without modifications (or even the
need to re-compile the application) as a web-application. The application is
rendered inside a browser with exactly the same look-and-feel as the Java desk-
top application shown in Figure 5. The asynchronous updates of the date and
time (at the bottom of the screenshot) are handled by fine-granular updates.
L.e., it is not necessary to re-load the complete HTML page whenever the time
and date on the bottom of the window are updated. XML11 is implemented
on the client-side using only HTML, DOM, and JavaScript. A Java-plugin is
not required.

In order to compare XML11 with the X11 protocol, we have conducted some

10

& Layout Demo] o]

This is a simple application demonstrating XML11's layouting ;I
capahilities. 'Dump'writes all text input to the textares atthe
hottorn of this windows. 'Clear' removes all text from this

textarea.
4 ;lJ
Line1: |abc
Linez: [123 458 789
Itern 0
Iterm 1 @
Iterm 4
Line1: abc ﬂ
Line2: 123/456i789
Selected: Iterm 2
========== (31 1J2005, 10:48:41 ==========
=

Dumpl Clearl Exitl

031172005, 10:48:51 Free mem; 1437KB

Fig. 5. Example application.

benchmarks by measuring the size of the PDUs going back and forth between
end-device and the server. We used the application shown in Figure 5 in three
different setups:

(1) as a native X11-application.
(2) as an XML11 application without code migration.
(3) as an XML11 application with code migration.

For each of the three setups we measured the network traffic for different
stages during the life-time of the application:

Library: how much library code is transferred. This does not apply to X11.
For XMLI11, the library code includes any initial startup libraries imple-
mented in JavaScript.

Code: the overhead introduced by code migration. The application described
earlier translates to 2.600 lines of JavaScript code.

Initial screen: how much traffic is generated in order to display the initial
screen. This includes all the widgets as well as the image that is part of our
demo application.

Asynchronous update: how much traffic is generated to update the date
and time in the application. We measured the traffic for exactly one update.

User interaction: we measure the traffic generated by a fixed pattern of
user interaction. This includes some input to the various widgets as well as

11

XML11
X11

W /O Migration | With Migration
Library 0 92.660 92.660
Code 0 0 51.656
Initial screen 203.904 15.016 15.016
Async. update 15.804 1.964 1.964
User interaction 25.036 3.510 0
Total 244.744 113.150 161.296

Table 2

PDU sizes in Bytes.

clicking one of the buttons.

The results of our measurements are shown in Table 2. We used xmon to
measure the traffic generated by the X11-protocol (see [12]) and tcpmon from
the Apache Axis project to measure the HTTP traffic (see [2]). As can be
seen in Table 2, XML11 significantly reduces the amount of traffic over the
network. For larger applications the library overhead for XML11 will become
less significant making XML11 even more efficient than X11.

Table 2 only shows the amount of traffic generated by our demo application in
different scenarios. We do not show the number of PDUs that were exchanged.
In particular the row labelled “User interaction” is very different for the various
setups. For the X11-protocol, virtually every single keystroke results in a PDU-
exchange with the server. The values shown for XML11 only stem from one
single HTTP interaction, which underlines the fact that XML11 is better
suited for high-latency connections than X11.

4 Related Work

Several projects — commercial and Open Source — exist that aim at provid-
ing an easy migration path for legacy Java applications to web applications.
WebCream is a commercial product by a company called CreamTec (see [4]).
They have specialized in providing AWT and Swing replacements that render
the interface of the Java application inside of a web browser. WebCream makes
use of proprietary features of Microsoft’s Internet Explorer and therefore only
runs inside this browser.

Two Open Source projects, both hosted at SourceForge, follow the same idea
of exposing Java desktop applications as web applications. The first one is

12

called WebOnSwing (see [15]). Unlike WebCream, this project is not tailored
for a particular browser. One feature offered by WebOnSwing are templates
that allow to change the look-and-feel of the application that is rendered inside
the browser. Another project with similar features, but not quite as mature,
is SwingWeb (see [8]).

There are several differences between these projects and XML11. First and
foremost, XML11 defines a technology-independent protocol. Although our
prototype also uses Java as a foundation, we are not limited to Java. The
XML11 protocol also decouples client and server side technologies and allows
us to support different end-devices. The XML11 protocol also supports asyn-
chronous updates which none of the projects discussed in this section supports.
This means that for WebCream, WebOnSwing, and SwingWeb, every change
on the user interface requires these technologies to re-load a new HTML page.
None of these project supports code migration and implicit middleware.

5 Conclusions and Outlook

XML11 defines a client/server protocol similar in spirit to the X11-protocol
developed by MIT. The difference is that XML11 is at a higher level of abstrac-
tion, making use of advanced capabilities often found in end-devices. XML11
includes a code migration framework that allows the migration of business
logic to the end-device in order to compensate for network communication
latencies. Our prototype implementation of XML11 embeds the server-side of
the XML11 protocol in Java’s AWT/Swing. The client side implementation
of XML11 runs inside any standard web browser using JavaScript.

XML11 combines many different techniques from other areas of research. It
uses middleware to allow transparent interaction between the end-device and
the server. The middleware is integrated implicitly, which means that the
application programmer using XML11 effectively is not aware middleware is
used. XML11 also makes use of cross-language translation to implement a
code migration framework. This is achieved by creating an assembly language
for Java byte code which we call XMLVM. The Ul is described through XUL,
but unlike XUL, XML11 allows for dynamic modifications of the UI.

We plan to apply our framework for different domains. For one, we plan to im-
plement a PocketPC version of the XML11 client-side protocol. Furthermore,
we will investigate XML11 server-side implementations for different platforms
such as .NET. It will be interesting to see the compatibility of XMLVM with
.NET’s Intermediate Language.

13

References

[1] Apache Foundation. Jakarta - Tomcat. http://jakarta.apache.org/tomcat/.
[2] Apache Foundation. WebServices Axis. http://ws.apache.org/axis/.

[3] G.J. Badros. A markup language for java source code.
May 2000. http://www.cs.washington.edu/research/constraints/web/badros-
javaml-www9.pdf.

[4] CreamTec, LLC. WebCream. http://www.creamtec.com/webcream/.

[5] Markus Dahm. Byte code engineering. Java Informations Tage, pages 267277,
1999.

[6] W.Emmerich, C. Mascolo, and A. Finkelstein. Implementing incremental code
migration with xml. pages 397-406. In M. Jazayeri and A. Wolf, editors, Proc.
22nd Int. Conf. on Software Engineering (ICSE2000) Limerick, Ireland, ACM
Press., June 2000.
http://www.cs.ucl.ac.uk/staff/W.Emmerich /publications /ICSE2000 /MobXML /mobxml.pdf.

[7] Jan-Klaas Kollhof. JSolait - A JavaScript library. http://www.jsolait.net/.
[8] Tiong Hiang Lee. SwingWeb. http://swingweb.sourceforge.net/swingweb /.

[9] Jonathan I. Maletic, Michael L. Collard, and Andrian Marcus. Source
code files as structured documents. pages 289-292 June 2002.
http://www.sdml.info/papers/iwpc02.pdf.

[10] E. Mamas and K. Kontogiannis. Towards portable source code representation
using xml. pages 172-182. Proceedings of the Seventh Working Conference
on Reverse Engineering, IEEE Computer Society Press, Brisbane Australia,
November 2000.

[11] G. McArthur, J. Mylopoulos, and S.K.K. Ng. An extensible tool for source code
representation using xml. pages 199-208. Proceedings of the Ninth Working
Conference on Reverse Engineering, IEEE Computer Society, Richmond,
Virginia, USA, October 2002.

[12] Greg McFarlane. Xmon - X Protocol Monitor.
http://sourceforge.net/projects/xmon/.

[13] Jonathan Meyer. An assembler for the java virtual machine. 1996.
http://jasmin.sourceforge.net/.

[14] The Open Group. X Window System (X11R6) Protocol, 1999.
[15] Fernando Petrola. WebOnSwing. http://webonswing.sourceforge.net/xoops/.
[16] W3C. XSL Transformations, 1999. http://www.w3.org/TR/xslt.

[17] W3C. Web Services Description Language (WSDL) Version 1.1, 2001.
http://www.w3.org/ TR /wsdl.

14

[18] W3C. Simple Object Access Protocol (SOAP) Version 1.2, 2003.
http://www.w3.org/TR/soap.

[19] XULPlanet. XUL. http://www.xulplanet.com/.

15

